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Abstract   Clustering  is  an  important  and  effective  means  of  knowledge 
discovery.  A key characteristic of a dataset may be the number of clusters present, 
but many techniques require this as a parameter, rather than yielding it as a result.  
Additionally, many effective techniques rely on initial random seeding, and are 
therefore non-deterministic. This paper introduces a new clustering algorithm – 
Assimilation Clustering - which is both deterministic and yields the number of 
clusters in the dataset.

1 Introduction to Clustering

Data clustering[1] is an important and effective means of knowledge discovery[2], 
and is a form of unsupervised learning.  This section seeks to define clustering, 
and identify the problem that deterministic clustering seeks to address.

Clustering is only partly defined, in that what constitutes a cluster can itself  
have multiple definitions.  When we ask an algorithm[3] to cluster data points, we 
are in effect asking it  to cluster those data points in a way which our human,  
animal, or insect[4] pattern-recognition[5] has evolved to regard as clusters.  Such 
clusters are likely to reflect an underlying reality, in that pattern recognition which 
recognises 'real' patterns confers an evolutionary advantage.

The ideal clustering algorithm would include these (and other) characteristics:
1. deterministic, and yield the same clusters on the same input data.  Many 

clustering 'algorithms' (such as k-means) are heuristics, as the same input 
does not always yield the same output, depending on the initialisation[6].

2. optimal, in that rather than just find a local minimum (or set of clusters),  
it would find the global minimum (or 'best' set of clusters), and always 
therefore return the same set of clusters.  Whilst an optimal clustering 
algorithm would imply determinism, a deterministic algorithm would not 
necessary be optimal.
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3. informative and determine the number of clusters present from the data. 
Many techniques require this as an input, when it is normally unknown, 
and would be one of the most important facts we would like to determine.

4. fast, and have an algorithmic growth of Order[7] (N log N) or better.  In 
some cases speed can be increased using parallel data processing[8].

5. visually plausible, and not appear counter-intuitive.
In practice,  these requirements appear to be mutually exclusive.   Two popular 
forms of clustering, in widespread industrial use, are:

1. hierarchical clustering [9], starts with each point as a separate cluster, 
and  successively  joins  the  two  closest  clusters,  yielding  a  hierarchy. 
Visually effective and often highly informative, the hierarchical clusters 
are not distinct.  It cannot be said, therefore, that this point and that point 
are in the same or different clusters.  Though deterministic, hierarchical 
clustering but does not determine the number of clusters.

2. k-means clustering [10], in which each data point is initially assigned to 
one of k random clusters.  The membership of each cluster is adjusted in 
successive iterations until  the a local minimum is reached, when each 
point  is  a  member  of  its  closest  cluster.   k-means  is  fast,  but  not 
deterministic: the outcome depends on the initial random assignment.

Research Objective, Observations, and Algorithm Overview

This research sought to design an algorithm which is deterministic (criterion 1) 
and determines the number of clusters present (criterion 3).

This section discusses the algorithm developed, starting with key observations 
on which it depends, and then giving an overview of the algorithm, which is a type 
of agglomerative clustering algorithm.

This clustering algorithm uses the observation that not all points in a sample 
are necessarily part of a cluster.  This is, in effect, an unspoken assumption in 
most clustering algorithms: they assume that every data point is part of a cluster.

Specifically, for a dataset of N points there could be anywhere between 0 to N 
clusters.   It  is entirely valid for a clustering algorithm processing N points to  
return L clusters, containing M points, with a remainder of N-M points which are  
not part of any cluster.

Secondly, clusters contain data points and therefore cover an area, even if it is 
convenient  to  represent  that  cluster  as  having  a  single  centroid.   Such  a 
representation, however, hides the fact that sometimes different points in the same 
cluster may 'prefer' to be merged with different other clusters.



Specifically,  two clusters –  a  smaller  (A)  and  larger  (B)  -  should  not  be 
merged if a significant number of points in the smaller cluster (A) 'belong' in 
a different partner cluster (not B).

These observations are enabling principles of this new algorithm, which means 
that it  does not have to join every singleton cluster or small cluster into larger 
clusters, although generally it does.

Initially, each point is a singleton cluster.  Assimilation clustering progressively 
merges clusters, ordered with nearest first, to existing clusters, until no merges are 
possible,  because  any  merge  would  imply  a  contradiction  or  significant  
ambiguity, where sufficient points in the smaller of the clusters to be merged do 
not belong to the other, but would 'prefer' to be in a different cluster.

It  is  this  progressive  assimilation  of  smaller  clusters  into  larger  until  a 
contradiction arises which gives the algorithm its name2.

When complete, the algorithm will return C clusters, with R points remaining,  
which are not in any cluster (or are regarded as singletons).  If there are N points, 
then (C + R) <= N.

Algorithm Implementation

The  algorithm and  a  comparative  k-means  was  implemented  in  Python.   For 
purposes of evaluation, repeatable random test data was generated.  

A node is a tuple of x and y position, ie (x,y); a cluster is a list of nodes; and the 
global  Clusters is a dictionary of clusters.  For example, a Python dictionary of 
two clusters,  the  first  with a single node,  and the second with  two,  would  be 
represented as: Clusters = { 0: [ (4,10) ], 1: [ (21,19), (23,17) ] }

The test data generator returns a list of data nodes, using two possible models.  If 
the model is “random” they are an evenly distributed set of nodes.  If the model is 
“lumpy”, the nodes are distributed around a set of random centres and merged 
with a smaller set of random nodes, in order to produce noisy degraded clusters of 
nodes.  By resetting the random seed the same 'random' dataset can be used in 
repeat tests.  (Assimilation Clustering does not itself use random numbers.)

The  clustering  algorithm uses  metrics which  return  the  distance  between two 
nodes, the distance between two clusters (the distance between the two nearest 
points in separate clusters), and the number of singleton clusters.
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The clustering algorithm uses three core support routines, an initialisation routine,  
and the main clustering routine.  The support routines are:

1. ListClusterPairsInClosenessOrder() lists pairs of clusters, such that the 
closest clusters are listed first, and without repetition.

2. AllNodesExceptClusters(i, j) yields all nodes in the dataset except those 
in cluster i or cluster j.

3. CheckAffinity(shorter, longer) checks that all the nodes in the shorter 
cluster do indeed belong in the longer cluster.  In other words, it returns 
false if more than tolerance (typically 0 to 3) nodes in the shorter cluster 
would be better placed in a different cluster to the longer cluster.

    def CheckAffinity(shorter, longer, tolerance):
     "Checks all nodes in candidate pair of clusters belong together"

shorterCluster = Clusters[shorter]
longerCluster  = Clusters[longer]
objections = 0
# Consider all the nodes in the shorter candidate cluster
for nodeI in shorterCluster:
    # Find the distance to the nearest node in other cluster
    distToNearestPartnerNode = min(NodeDist(nodeI, nodeJ)

for nodeJ in longerCluster)
    # Are there ANY other nodes, not in this pair,
    # which are nearer to the node being considered?
    if any(NodeDist(nodeI, otherNode) < distToNearestPartnerNode
      for otherNode in AllNodesExceptClusters(shorter, longer)):
        if objections > tolerance:
            return False
        else:
            objections += 1
    # ok to merge so long as there are not too many objections
    return objections <= tolerance

Clustering  is  initialised  with  InitialAssimilationClusters,  which  simply  assigns 
each node to its own cluster:

ClusterRound() performs one round of  clustering,  and  is  called  repeatedly 
until it can no longer merge clusters.   It looks at all possible pairs of clusters 
(closest first) and if they belong together, merges them.  The tolerance parameter 
is simply passed through to CheckAffinity.  If  strict, then equal length clusters 
must both belong with each other, otherwise only one must belong with the other. 
Experiment suggests that strict is better as false.  This routine exits after a merge 
since the cluster ordering must be re-calculated; and so that the drawing can occur.

def ClusterRound(tolerance, strict):
    # Find shortest distance between any two clusters
    n = 0
    for d, i,j in ListClusterPairsInClosenessOrder():
        n += 1
        if len(Clusters[i]) < len(Clusters[j]):
            ok = CheckAffinity(i, j, tolerance)



        elif len(Clusters[i]) > len(Clusters[j]):
            ok = CheckAffinity(j, i, tolerance)
        else: # equal length clusters...
            if strict:
                ok = CheckAffinity(i, j, tolerance) and

CheckAffinity(j, i, tolerance)
            else:
                ok = CheckAffinity(i, j, tolerance) or

CheckAffinity(j, i, tolerance)
        if ok:
            MergeClusters(i, j)
            return False
    return True

Finally, the supervisor sets up the test data, and keeps calling the main clustering 
routine until it has finished, drawing a new frame each iteration.

Results

The results of Assimilation Clustering with tolerances of 2 against both random 
and lumpy data fields are shown below.

Conclusions

Compared to the initial five criteria, Assimilation Clustering is:
1. deterministic, and yields the same clusters on the same input data.
2. neither optimal nor sub-optimal, in that it is not seeking a minimum.
3. informative and determines the number of clusters present from the data.
4. slow, although an optimised fast version has not been ruled out.
5. visually plausible, to the author at least.



Further Work

Before Assimilation Clustering is ready for industrial deployment, further work 
would be desirable:

1. Assimilation  Clustering  should  be  compared  with  other  techniques  to 
characterise the scenarios in which it produces useful output.

2. Mathematical examination of the validity of the clusters produced.
3. Alternative interpretations of tolerance should be explored.  In this paper 

an  absolute  tolerance  is  used,  but  a  proportional  or  even  adaptive 
tolerance could be used instead.

4. An optimised version of Assimilation Clustering should be written, and 
its  Order  of  execution  determined.   Obvious  optimisations  include (i) 
incrementally adjusting the ordered list of cluster distances and (ii) when 
checking affinity, consider only nodes in nearby clusters.
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