
Deterministic Assimilation Clustering

Andrew C Lea MA(Cantab)1

Abstract Clustering is an important and effective means of knowledge
discovery. A key characteristic of a dataset may be the number of clusters present,
but many techniques require this as a parameter, rather than yielding it as a result.
Additionally, many effective techniques rely on initial random seeding, and are
therefore non-deterministic. This paper introduces a new clustering algorithm –
Assimilation Clustering - which is both deterministic and yields the number of
clusters in the dataset.

1 Introduction to Clustering

Data clustering[1] is an important and effective means of knowledge discovery[2],
and is a form of unsupervised learning. This section seeks to define clustering,
and identify the problem that deterministic clustering seeks to address.

Clustering is only partly defined, in that what constitutes a cluster can itself
have multiple definitions. When we ask an algorithm[3] to cluster data points, we
are in effect asking it to cluster those data points in a way which our human,
animal, or insect[4] pattern-recognition[5] has evolved to regard as clusters. Such
clusters are likely to reflect an underlying reality, in that pattern recognition which
recognises 'real' patterns confers an evolutionary advantage.

The ideal clustering algorithm would include these (and other) characteristics:
1. deterministic, and yield the same clusters on the same input data. Many

clustering 'algorithms' (such as k-means) are heuristics, as the same input
does not always yield the same output, depending on the initialisation[6].

2. optimal, in that rather than just find a local minimum (or set of clusters),
it would find the global minimum (or 'best' set of clusters), and always
therefore return the same set of clusters. Whilst an optimal clustering
algorithm would imply determinism, a deterministic algorithm would not
necessary be optimal.

1Primary Key Associates Ltd, andrew.lea@scientific.co.uk

3. informative and determine the number of clusters present from the data.
Many techniques require this as an input, when it is normally unknown,
and would be one of the most important facts we would like to determine.

4. fast, and have an algorithmic growth of Order[7] (N log N) or better. In
some cases speed can be increased using parallel data processing[8].

5. visually plausible, and not appear counter-intuitive.
In practice, these requirements appear to be mutually exclusive. Two popular
forms of clustering, in widespread industrial use, are:

1. hierarchical clustering [9], starts with each point as a separate cluster,
and successively joins the two closest clusters, yielding a hierarchy.
Visually effective and often highly informative, the hierarchical clusters
are not distinct. It cannot be said, therefore, that this point and that point
are in the same or different clusters. Though deterministic, hierarchical
clustering but does not determine the number of clusters.

2. k-means clustering [10], in which each data point is initially assigned to
one of k random clusters. The membership of each cluster is adjusted in
successive iterations until the a local minimum is reached, when each
point is a member of its closest cluster. k-means is fast, but not
deterministic: the outcome depends on the initial random assignment.

Research Objective, Observations, and Algorithm Overview

This research sought to design an algorithm which is deterministic (criterion 1)
and determines the number of clusters present (criterion 3).

This section discusses the algorithm developed, starting with key observations
on which it depends, and then giving an overview of the algorithm, which is a type
of agglomerative clustering algorithm.

This clustering algorithm uses the observation that not all points in a sample
are necessarily part of a cluster. This is, in effect, an unspoken assumption in
most clustering algorithms: they assume that every data point is part of a cluster.

Specifically, for a dataset of N points there could be anywhere between 0 to N
clusters. It is entirely valid for a clustering algorithm processing N points to
return L clusters, containing M points, with a remainder of N-M points which are
not part of any cluster.

Secondly, clusters contain data points and therefore cover an area, even if it is
convenient to represent that cluster as having a single centroid. Such a
representation, however, hides the fact that sometimes different points in the same
cluster may 'prefer' to be merged with different other clusters.

Specifically, two clusters – a smaller (A) and larger (B) - should not be
merged if a significant number of points in the smaller cluster (A) 'belong' in
a different partner cluster (not B).

These observations are enabling principles of this new algorithm, which means
that it does not have to join every singleton cluster or small cluster into larger
clusters, although generally it does.

Initially, each point is a singleton cluster. Assimilation clustering progressively
merges clusters, ordered with nearest first, to existing clusters, until no merges are
possible, because any merge would imply a contradiction or significant
ambiguity, where sufficient points in the smaller of the clusters to be merged do
not belong to the other, but would 'prefer' to be in a different cluster.

It is this progressive assimilation of smaller clusters into larger until a
contradiction arises which gives the algorithm its name2.

When complete, the algorithm will return C clusters, with R points remaining,
which are not in any cluster (or are regarded as singletons). If there are N points,
then (C + R) <= N.

Algorithm Implementation

The algorithm and a comparative k-means was implemented in Python. For
purposes of evaluation, repeatable random test data was generated.

A node is a tuple of x and y position, ie (x,y); a cluster is a list of nodes; and the
global Clusters is a dictionary of clusters. For example, a Python dictionary of
two clusters, the first with a single node, and the second with two, would be
represented as: Clusters = { 0: [(4,10)], 1: [(21,19), (23,17)] }

The test data generator returns a list of data nodes, using two possible models. If
the model is “random” they are an evenly distributed set of nodes. If the model is
“lumpy”, the nodes are distributed around a set of random centres and merged
with a smaller set of random nodes, in order to produce noisy degraded clusters of
nodes. By resetting the random seed the same 'random' dataset can be used in
repeat tests. (Assimilation Clustering does not itself use random numbers.)

The clustering algorithm uses metrics which return the distance between two
nodes, the distance between two clusters (the distance between the two nearest
points in separate clusters), and the number of singleton clusters.

2 Star Trek fans may prefer to think of this as the 'Borg Algorithm'.

The clustering algorithm uses three core support routines, an initialisation routine,
and the main clustering routine. The support routines are:

1. ListClusterPairsInClosenessOrder() lists pairs of clusters, such that the
closest clusters are listed first, and without repetition.

2. AllNodesExceptClusters(i, j) yields all nodes in the dataset except those
in cluster i or cluster j.

3. CheckAffinity(shorter, longer) checks that all the nodes in the shorter
cluster do indeed belong in the longer cluster. In other words, it returns
false if more than tolerance (typically 0 to 3) nodes in the shorter cluster
would be better placed in a different cluster to the longer cluster.

 def CheckAffinity(shorter, longer, tolerance):
 "Checks all nodes in candidate pair of clusters belong together"

shorterCluster = Clusters[shorter]
longerCluster = Clusters[longer]
objections = 0
Consider all the nodes in the shorter candidate cluster
for nodeI in shorterCluster:
 # Find the distance to the nearest node in other cluster
 distToNearestPartnerNode = min(NodeDist(nodeI, nodeJ)

for nodeJ in longerCluster)
 # Are there ANY other nodes, not in this pair,
 # which are nearer to the node being considered?
 if any(NodeDist(nodeI, otherNode) < distToNearestPartnerNode
 for otherNode in AllNodesExceptClusters(shorter, longer)):
 if objections > tolerance:
 return False
 else:
 objections += 1
 # ok to merge so long as there are not too many objections
 return objections <= tolerance

Clustering is initialised with InitialAssimilationClusters, which simply assigns
each node to its own cluster:

ClusterRound() performs one round of clustering, and is called repeatedly
until it can no longer merge clusters. It looks at all possible pairs of clusters
(closest first) and if they belong together, merges them. The tolerance parameter
is simply passed through to CheckAffinity. If strict, then equal length clusters
must both belong with each other, otherwise only one must belong with the other.
Experiment suggests that strict is better as false. This routine exits after a merge
since the cluster ordering must be re-calculated; and so that the drawing can occur.

def ClusterRound(tolerance, strict):
 # Find shortest distance between any two clusters
 n = 0
 for d, i,j in ListClusterPairsInClosenessOrder():
 n += 1
 if len(Clusters[i]) < len(Clusters[j]):
 ok = CheckAffinity(i, j, tolerance)

 elif len(Clusters[i]) > len(Clusters[j]):
 ok = CheckAffinity(j, i, tolerance)
 else: # equal length clusters...
 if strict:
 ok = CheckAffinity(i, j, tolerance) and

CheckAffinity(j, i, tolerance)
 else:
 ok = CheckAffinity(i, j, tolerance) or

CheckAffinity(j, i, tolerance)
 if ok:
 MergeClusters(i, j)
 return False
 return True

Finally, the supervisor sets up the test data, and keeps calling the main clustering
routine until it has finished, drawing a new frame each iteration.

Results

The results of Assimilation Clustering with tolerances of 2 against both random
and lumpy data fields are shown below.

Conclusions

Compared to the initial five criteria, Assimilation Clustering is:
1. deterministic, and yields the same clusters on the same input data.
2. neither optimal nor sub-optimal, in that it is not seeking a minimum.
3. informative and determines the number of clusters present from the data.
4. slow, although an optimised fast version has not been ruled out.
5. visually plausible, to the author at least.

Further Work

Before Assimilation Clustering is ready for industrial deployment, further work
would be desirable:

1. Assimilation Clustering should be compared with other techniques to
characterise the scenarios in which it produces useful output.

2. Mathematical examination of the validity of the clusters produced.
3. Alternative interpretations of tolerance should be explored. In this paper

an absolute tolerance is used, but a proportional or even adaptive
tolerance could be used instead.

4. An optimised version of Assimilation Clustering should be written, and
its Order of execution determined. Obvious optimisations include (i)
incrementally adjusting the ordered list of cluster distances and (ii) when
checking affinity, consider only nodes in nearby clusters.

References

1. Jain, Murty, and Flynn, “Data clustering: a review”, 1999, ACM Computing Surveys
(CSUR) vol 31 issue 3

2. Oded Maimon and Lior Rokach, “Data Mining and Knowledge Discovery Handbook”, 2010
Springer ISBN: 978-0-387-09822-7 and 978-0-387-09823-4

3. Andeas Blass and Yuri Gurevich, “Algorithms: A Quest for Absolute Definitions”, 2003,
Bulletin of European Association for Theoretical Computer Science

4. M.V. Srinivasan, “Pattern recognition in the honeybee: Recent progress”, 1993, Journal of
Insect Physiology, Volume 40, Issue 3, Elsevier

5. Jain, Duin, Mao, “Statistical pattern recognition: a review”, 2000, Pattern Analysis and
Machine Intelligence, IEEE Transactions on (Volume:22 , Issue: 1)

6. J.M Peña1, J.A Lozano, P Larrañaga, “An empirical comparison of four initialization
methods for the K-Means algorithm”, 1998, Pattern Recognition Letters, Volume 20, Issue
10, Elsevier

7. Donald Knuth. “The Art of Computer Programming”, Volume 1: Fundamental Algorithms,
Third Edition. Addison–Wesley, 1997. ISBN 0-201-89683-4.

8. Anusha Vasudevan, M. Swetha, H. Hyba, G. Rajiv Suresh Kumar, “Map-Reduce Based High
Performance Clustering On Large Scale Dataset Using Parallel Data Processing”, 2014, Data
Mining and Knowledge Engineering 6(5).

9. Segaran, “Programming Collective Intelligence”, O'Reilly, ISBN 978-0-596-52932-1
10. Hastie, Tibshirani, Friedman, “The Elements of Statistical Learning: Data Mining, Inference,

and Prediction”, 2009, Springer

