
Implementing a Coordination Agent for Modularised

Case Bases

Kerstin Bach, Meike Reichle, Alexander Reichle-Schmehl,

and Klaus-Dieter Althoff

Intelligent Information Systems Lab

University of Hildesheim

Marienburger Platz 22, 31141 Hildesheim, Germany

[lastname]@iis.uni-hildesheim.de

Abstract. The work presented in this paper focuses on the composition of

retrieval results returned by distributed case bases. We describe how different

knowledge sources can be accessed using an abstract description language and

in which way we handle the resulting heterogeneous information. The

realisation of this query agent is a part of SEASALT, an architecture for

intelligent information systems, which follows the example of collaborating

human experts and further on provides an architecture that contains all aspects

of knowledge utilisation. Within SEASALT knowledge is provided in

distributed knowledge sources represented by a number of case based agents.

The coordination agent presented in this paper uses those knowledge sources to

combine information to compose information into individual answers. We

evaluate our approach based on the real-life application of travel medicine and

show how the retrieval in distributed case bases can be coordinated and

executed.

Keywords: Collaborative Multi-Expert Systems; Coordination Agent,

Knowledge Provision, Distributed Case Bases

1 Introduction

In this paper we present an implementation of flexible knowledge provision based on

distributed, heterogeneous knowledge sources that can be accessed in different ways.

We combine retrieval results of several Case-Based Reasoning (CBR) systems

embedded in a multi-agent system as a part of the realisation of Collaborative Multi-

Expert-Systems (CoMES) presented in [1]. The novelty of our approach is the use of

heterogeneous case bases for representing a modularised complex knowledge domain.

There have been other approaches using partitioned and/or distributed case bases, but

still differ from our approach. A description of these approaches is also included in

this paper.

The work we present focuses on one aspect of the SEASALT architecture [2], the

knowledge provision, which points out how to access, combine and provide

knowledge of different sources. SEASALT (Sharing Experience using an Agent-

based System Architecture LayouT) proposes an architecture for intelligent

information systems with several cross-linked case bases that are used to store

information on different aspects of a complex knowledge domain and are filled with

information mined from the online communication of a community of experts.

Our approach does not only feature CBR systems, we are also able to deal with

data bases, web services, or other knowledge sources that can be accessed in the

WWW. Nevertheless, in this paper we focus on modularised case bases as they were

presented in [3]. Using the CoMES approach to implement complex applications we

benefit from the easier maintainability of modularised case bases and their mapping to

certain areas of expertise. Complex application domains follow different aspects and

like in large companies we also have experts (in our approach Topic Agents) that are

working together in order to handle complex problems or questions. An example for

complex application domains is travel medicine from which the examples in this

paper are derived.

This paper is structured as follows: In section 2 we describe our application

domain followed by the explanation of the knowledge provision within SEASALT

and the core idea of distributed case bases or knowledge sources in section 3. Section

4 presents the implementation of the Coordination Agent based on the requirements

given by the SEASALT architecture as well as on usability aspects, followed by a

detailed description of a Knowledge Map that holds metadata on the knowledge

sources and the communication interface that enables the realisation within an agent

framework. Related work to our approach is pointed out in section 5 and an

evaluation of the current status of the implementation as well as future work in this

area is presented in section 6. The final section summarises the work presented in this

paper and outlines our next steps in this area.

2 The docQuery Application Domain

Travel medicine is an interdisciplinary speciality concerned with the prevention,

management and research of health problems associated with travel, and covers all

medical aspects a traveller has to take care of before, during and after a journey. For

that reason it covers many medical areas and combines them with further information

about the destination, the activities planned and additional conditions which also have

to be considered when giving medical advice to a traveller. Travel medicine starts

when a person moves from one place to another by any mode of transportation and

stops after returning home without diseases or infections. A typical travel medical

application could be a German family who wants to spend their Easter holidays diving

in Alor to dive and afterwards they will travel around Bali by car. In case a traveller

gets sick after a journey a travel medicine consultation might also be required. First of

all we will focus on prevention work, followed by information provision during a

journey and information for diseased returnees. Since there are currently no sources

on medical information on the World Wide Web that are authorized by physicians

and/or experts, we aim at filling this gap by providing trustworthy travel medical

information for everybody.

The research project within which this work has been done is supported by

mediScon worldwide, a Germany based company with a team of physicians

specialized on travel medicine and TEMOS
1
, a telemedical project of the Institute of

Aerospace Medicine at the German Aerospace Center (DLR). Together we are

developing docQuery, an intelligent information system on travel medicine that

provides relevant information for each traveller about their individual journey.

We are realising docQuery based on the SEASALT architecture and our

modularised case bases are implemented using the empolis Information Access Suite

(e:IAS) [4], which is an industrial strength tool based on CBR. Currently, we have

identified seven different case bases that we use to retrieve information: they contain

information about countries, diseases, medications, vaccinations as well as

descriptions, guidelines, and experiences. The modularised knowledge in docQuery is

provided using CBR and each case base contains one specific topic with its own

domain model, rules, similarity measures and cases. Each case base will serve its own

topic and the case format will exactly fit the type of knowledge, which enables a

higher accuracy of the whole collaborative system.

The combination of medicaments used for vaccinations and the treatment of

chronic diseases can cause side effects or contraindications; thus it is necessary to

obtain the correct health history of a traveller and to recommend a solution without

any contradicting medicaments, information or advises. Therefore we do the

combination of the responses afterwards using the constraints given in the response

sets.

3 Knowledge Provision in SEASALT

In SEASALT the knowledge provision task is carried out by a so called Knowledge

Line that contains a Coordination Agent and a number of Topic Agents that each

covers one homogeneous area of expertise. The idea of the Knowledge Line concept

originates in software product lines as they are described in [5], which focus on

modularisation of tasks in order to create adaptable and flexible software (products).

In terms of SEASALT we use the modularisation aspect to combine knowledge based

on numerous different and homogeneous knowledge sources implemented as CBR

software agents. Each CBR agent is covering a certain topic (in our example travel

medicine that would be region, disease, medicament, activities) and is implemented as

a CBR-System maintained by a Case Factory [6]. The Case Factory approach is based

on the Experience Factory that uses CBR in order to coordinate software engineering

projects [7].

Fig. 1 depicts a Knowledge Line and its components that are providing and main-

taining knowledge in a Case Factory (left) and combining knowledge using additional

information (right) in order to answer questions or provide information. We assume

that an architecture based on Topic Agents is much easier to maintain than having one

monolithic case base, especially when dealing with rather complex domains. Each

Topic Agent is equipped with a Case Factory that contains its case base on which

1 TElemedicine for a MObile Society, see http://www.temos-network.org

retrieval queries are executed as well as agents that generate new cases, keep the case

base consistent, remove incoherent cases, create and maintain knowledge models, etc.

The Coordination Agent is the centre of the Knowledge Line and orchestrates the

Topic Agents to enable the combination of the retrieval results.

Fig. 1. Knowledge Provision within SEASALT: Knowledge Line consisting of one

Coordination Agent and several Topic Agents each based on a Case Factory

of its own

Even if we have different kinds of Topic Agents and their according Case

Factories, the behaviour of some Case Factory agents (like the new case inserter) can

be reused in other Case Factories of the same Knowledge Line. We differ between

agents that handle general aspects and are contained in any Case Factory and agents

that are topic-specific and have to be implemented individually. General Case Factory

agents usually focus on the performance or regular tasks like insertion, deletion,

merging of cases. Topic specific Case Factory agents are for example agents that

transfer knowledge between the knowledge containers [8] or define certain constraints

and usually they have to be implemented for an individual topic considering its

specifications or fulfilling domain dependent tasks.

The Knowledge Line retrieves its information, which is formalised by a

Knowledge Engineer and/or machine learning algorithms, from knowledge sources

like databases, web services, RSS-feeds, or other kinds of community services and

provides the information as a web service, in an information portal, or as a part of a

business work flow. The flexible structure of the knowledge line allows designing

applications incrementally by starting out with one or two Topic Agents and enlarging

the knowledge line, for example with more detailed or additional topics, as soon as

they are available or accessible.

4 Implementation of the Coordination Agent

The implementation of the Coordination Agent followed a set of requirements that

were derived from the SEASALT architecture description itself and from the

implementation and testing of the Topic Agents.

4.1 Requirements

During the design phase of the Coordination Agent the following requirements were

identified:

• The case representations of the Topic Agents differ from each other as well as the

agents' respective location might vary. This requires flexible access methods that

are able to deal with distributed locations, different kinds of result sets and

possibly also different access protocols.

• Some Topic Agents require another Topic Agent's output as their input and thus

need to be queried successively, others can be queried at any time. In order for the

Coordination Agent to be able to obey these dependencies they need to be

indicated in the Knowledge Map in an easily comprehensible way.

• Based on the dependencies denoted in the Knowledge Map the agent needs to be

able to develop a request strategy on demand. This request strategy should also be

optimisable with regard to different criteria such as the Topic Agents' response

speed, the quality of their information, the possible economic cost of a request to a

commercial information source and also possible access limits.

• In order to guarantee the quality of the final result of the incremental retrieval

process there needs to be a possibility to control what portion of the result set is

passed on to the subsequent Topic Agent. This portion should be describable

based on different criteria such as the number of cases or their similarity.

• In order to allow for higher flexibility and a seamless inclusion in the SEASALT

architecture the functionalities need to be implemented in an agent framework.

4.2 Knowledge Map

Firstly, in order for the Coordination Agent to be able to navigate the different

knowledge sources a format for the Knowledge Map had to be designed and

implemented. Since the dependencies between Topic Agents can take any form, we

decided to implement the Knowledge Map as a graph where each Topic Agent is

represented by a node and directed edges denote the dependencies. The case attributes

that serve as the next Topic Agent's input are associated with the respective edges.

The optimisation criteria are indicated by a number between 0 (worst) and 100 (best)

and are represented as node weights. In order to be able to limit the portion of the

result that is passed on to the next node we implemented four possible thresholds,

namely

• the total number of cases to be passed on

• the relative percentage of cases to be passed on

• the minimum similarity of cases to be passed on

• the “placement” with regard to similarity of the cases to be passed on. (For

instance the best and second best cases.)

An example graph from the docQuery application can be seen in Fig. 2.

Fig. 2. An example graph based on the docQuery application

According to our example introduced in the beginning of this paper the region

agent would return a case including the information that Alor and Bali are Indonesian

islands. Based on this information (i.e. Country = Indonesia) queries for general

safety information about this country, diseases that can be contracted in the country,

and certified (international standard) hospitals at the destination are initiated. In this

example there are two agents offering that information, a free one
2
 with information

of lesser quality and a commercial one
3
 with information of higher quality. The

retrieved diseases (Malaria, Yellow Fever, Diphtheria, Tetanus, Hepatitis A, Typhoid

Fever, etc.) are then subsequently used to query the medicaments agent for

recommendable vaccinations and medicaments that can be taken at the location. This

query returns an initial list of recommendable medicament candidates. Further on, the

information given by the user (Activities = “diving” and “road trip”) is used to request

information from the activity agent defining constraints for medicament

recommendations (e.g. Activity = “Diving” => Associated_factors = “high sun

exposure”) which are then again used to query the medicaments agent. In this

example a query for Counter_Indication = “high sun exposure” would return, among

others, the Malaria prophylaxis Doxycyclin Monohydrat, which would then be

removed from the initial list of recommended medicaments. Also, if specified, the

influences of chronic illnesses on recommended medicaments and planned activities

are queried. The combined information from all Topic Agents is compiled into an

information leaflet using ready prepared templates. (“When travelling to Indonesia,

please consider the following general information: ... Certified hospitals can be found

in the following places: ... A journey to Indonesia carries the following risks: ... We

recommend the following medicaments: ... These medicaments are not recommended

because of the following reasons ...”)

The Knowledge Map itself is stored as an XML document. We use RDF as the

wrapper format and describe the individual nodes with a namespace of our own. More

details concerning the XML-Format can be found in [9]. Based on the knowledge

2 The cost 100 denotes a minimal price, that is 0,-

3 The price is medium high, thus the cost value is 50, an agent with a higher cost would have

an even lower cost value.

map we then use a modified Dijkstra algorithm [10] to determine an optimal route

over the graph. The algorithm is modified in such a way that it optimises its route by

trying to maximise the arithmetic mean of all queried nodes. In the case of a tie

between two possible routes the one with the lesser variance is chosen.

4.3 Communication Interfaces

In order to address the requirement of flexible access to the heterogeneous Topic

Agents the communication interface was implemented as an abstraction layer to

access various kinds of Topic Agents. Although we mostly use CBR Systems as

Topic Agents we also want to be able to seamlessly incorporate external knowledge

sources. Because of this the interface is implemented in specialised classes (one per

access method) which can be individually instantiated at runtime when constructing

the internal representation of the knowledge map.

Fig. 3. A UML diagram of the connection interface

Different kinds of Topic Agents might also need a different number of parameters

to initiate a connection, an external Topic Agent that is based on a data base might for

example need host and port, username and password, while others, such as the e:IAS

based agents of the docQuery application just need the path to a configuration file

containing more detailed information on how to access the Topic Agent. Because of

this we needed to implement a way to pass different numbers of parameters to the

constructor of the class. Therefore the specialised query classes do not implement the

designed interface directly, but extend an abstract class in which a constructor takes

an array of strings as parameter. Furthermore, the abstract class declares an abstract

method, which is called by the constructor and is implemented by the specialised

classes. In this method specialised classes implement the connection instantiation.

Fig. 3 shows a UML class diagram with the designed interface, the abstract class

and one class implementing the access method to one kind of topic agent (in this case

the access to e:IAS.)

The Interface was designed to be as easily feasible as possible and therefore offers

only the bare minimum of functionalities needed to query Topic Agents. The method

dorequest() is used to query a Topic Agent, the result is a regular java list

containing java maps including the attribute names of the respective query results

and their specific values.

Another requirement towards the interface was high usability. It should be easy for

developers to use it to access different Topic Agents and it should be easily

expandable by new specialised classes to query not yet supported kinds of Topic

Agents. Because of this we decided to use mainly parameter types and return types

that java developers should be familiar with. The results of queries are represented by

simple lists of maps (in contrast for example to representing them in an XML

document which can be queried using XPath).

As the containing agent framework we chose Jade [11] since it is also Java based,

so the implemented functionalities could easily be integrated.

5 Related Work

Currently and in the past there have been several approaches that feature(d) a

dispatching or coordination agent between different knowledge sources. Basically our

approach varies because we are combining different kinds of information. For

example Ontañón and Plaza [12] presented an approach in which solutions for the

same problem have to be coordinated and selected. In comparison to our approach

only one of the retrieved cases has to be selected instead of using the retrieved cases

to compile one holistic solution. Further on, in Leake’s and Sooriamurthi’s approach

[13], due to complexity of the application domain and operability, a dispatching agent

for selecting the best result out of a number of retrieval results returned by several

CBR systems has been introduced. But all case bases contained the same type of cases

(same case representation), so the dispatching agent’s task was different from ours. It

had to select the best case instead of using the retrieved solution as a part of the

overall solution. Combining parts of cases in order to adapt given solutions to a new

problem has been introduced by Redmond in [14] in which he describes how snippets

of different cases can be retrieved and merged into other cases, but in comparison to

our approach, Redmond uses similar case representations from which he extracts parts

of cases in order to combine them. His approach and the knowledge provision in

SEASALT have in common that both deal with information snippets and put them

together in order to have a valid solution. Generally speaking a lot of the approaches

we use on knowledge sources could also be applied to a set of cases from one case

base. Analogous to our knowledge sources being of different quality and

trustworthiness one could also have one case base with different cases being of

different quality and trustworthiness. So our notion of knowledge source attributes is

comparable in that regard and thus benefits from advances in this field of CBR (like

the recent work of Briggs and Smyth [15]). However, from our point of view, the

graph-like representation of the knowledge sources and its use in the composition of

the final results cannot be easily applied to a set of cases from one case base. The

reason for this is, that in our approach one knowledge source covers one domain and

we can thus make assumptions on its semantics (the region case base will always

return a country, a country is always associated with illnesses, etc.). Having a set of

cases from one case base using one case representation, this assumption does not hold

and thus we cannot define the dependencies required in our graph.

The implementation of the Coordination Agent within the Knowledge Line can be

compared to a service oriented architecture approach, but it is realised within an agent

framework, because software agents within a framework can fulfil more flexible and

autonomous tasks [16] than web services. Another approach that adjoins to ours is the

concept of negotiating agents [17]. For example in our application there are several

competing aims. The traveller wants do to as many of the planned activities as

possible but chronic illnesses or medicaments’ side effects might prevent him or her,

furthermore the traveller wants to vaccinate against as many diseases as possible but

some vaccinations are incompatible. Instead of solving or at least optimising these

conflicts centrally using a coordination agent another possible solution might be to

have the respective agents negotiate the optimal solution among themselves without a

mediator. However, in our travel medical approach, the dependencies are straight

forward and do not require any flexibility, thus an own communication layer for the

negotiation seems to be too much overhead.

For the description of each knowledge source (or Topic Agent interface) we

decided to use RDF within XML. Our approach can also be compared to Service Data

Objects (SDO) [18] which are describing information sources as abstract interfaces,

but SDOs differ from our implementation because we do not need the strict

abstraction level as well as we do not plan to write information directly back into the

information source (in SEASALT this task is mainly carried out by the Case Factory).

Further on SDOs return retrieval results as graphs that have to be queried using

XMLPath which would be too much overhead in our approach. Other related

approaches for the realisation of the knowledge map are the Business Execution

Language (BEPL) [19], OWL(-S) [20], or WSDL [21], but all of them either did not

fit our requirements to be easily maintainable by humans (like Knowledge Engineers)

or had other objectives. For a more detailed evaluation of these approaches please see

[9].

6 Evaluation and Future Work

A comparative evaluation of the coordination agent and its underlying knowledge

map is difficult, since both are the solution to a rather specialised problem that, in this

case, stems from the modularised nature of the SEASALT architecture. Also we think

that a purely local evaluation with regard to performance and runtime would be of

little value to fellow researchers. Because of this we chose to do a practical evaluation

within our first application domain travel medicine. Our application partner’s current

best practice is the manual assembling of information leaflets, copy-pasting recurrent

texts (like general information and warnings) from prepared templates and external

sources. The application partner has been compiling these information leaflets for

several years and has in the meantime optimised the process as far as possible. Using

this approach a trained medical practitioner needs about an hour to create a complete

leaflet. First tests have shown that the docQuery system offers a significant time

saving and takes a lot of repetitive tasks from the medical practitioner. Even when

counterchecking every generated leaflet and, if necessary, adding corrections or

additional information the process of composition of information leaflets is

significantly accelerated using docQuery.

Concerning the actual implementation, in section 4.1 we defined several requirements

and Table 1 lists these requirements in more detail. Since this is work in progress the

evaluation table points out what the current state of our implementation is but also

what we plan to do in the future.

Table 1: Evaluation of Implementation

Requirements Current Implementation Future Work

Access to local and

remote knowledge

sources

Possible

Access via different

access protocols

Yes (RMI (e:IAS), ODBC) Web Services

Description of

dependencies

Yes, in graph Automatic detection of

dependencies based on

semantic markup

Knowledge Map

Format

Yes, described using RDF and

specialised namespaces

Complete description in

RDF

Generation of

request strategy

On demand, start and ending

nodes have to be defined

Automatic recognition of

start and ending nodes

Optimisation

criteria

Yes, currently implemented:

information quality, economic

cost, speed, access limits

Evaluation of additional

criteria

Combination of

optimisation

criteria

No, currently one criterion has

to be chosen

(Weighted) combination of

optimisation criteria

Definition of result

set limitation

Yes (number of results,

percentage, minimum

similarity, “placement”)

Evaluation of additional

limitations

Integration in a

multi-agent-

architecture

Yes using Jade [11] Implementation of more

flexible behaviour and

parallelisation of requests

using several Coordination

Agents

Currently we use the Coordination Agent in the docQuery project. Due to its medical

domain this project requires strict definitions and dependencies, so their

implementation was our main focus in this first instantiation of SEASALT. For

docQuery the Coordination Agent works satisfactorily, but in order to create a more

general and a more flexible architecture we will improve and extend the existing

functionalities as pointed out in the evaluation table.

7 Conclusion and Outlook

This paper focused on the implementation of a Coordination Agent that can access

distributed case bases, process and compile the retrieved information, and create

individualised answers in a complex application domain. The Coordination Agent is

the central component of the knowledge provision task within the SEASALT

architecture that is based on the CoMES approach. The knowledge provision is

realised using the Knowledge Line approach to coordinate different knowledge

sources and provide a flexible framework for knowledge provision. In our docQuery

application we handle seven different case bases with different case representations

that have to be accessed in order to create complete information for a traveller.

Further on, we plan to extend the knowledge sources with additional and redundant

services aiming at better or more reliable results in case our case bases do not cover a

certain request.

The Coordination Agent’s main feature is the Knowledge Map containing abstract

access methods for different kinds of knowledge sources as well as a graph-based

representation of the knowledge sources themselves so we can explicitly define

dependencies between knowledge sources as we claimed it in [3]. The adapted

Dijkstra algorithm has proven to be a good choice to automatically calculate a request

strategy. However, in more flexible application domains our algorithm might have to

provide more features, such as the combination of optimisation criteria or the

automatic detection of entry points into the graph, so our future work will especially

focus on that area.

References

1. Althoff, K.-D., Bach, K., Deutsch, J.-O., Hanft, A., Mänz, J., Müller, T., Newo, R., Reichle,

M., Schaaf, M., Weis, K.-H.: Collaborative Multi-Expert-Systems - Realizing Knowlegde-

Product-Lines with Case Factories and Distributed Learning Systems, In: Baumeister, J.,

Seipel, D. (eds) Proceedings of the 3rd Workshop on Knowledge Engineering and Software

Engineering (KESE 2007), September 2007. University of Osnabrück, (2007)

2. Bach, K., Reichle, M., Althoff, K.-D.: A Domain Independent System Architecture for Sha-

ring Experience, In: Proceedings of LWA 2007, Workshop Wissens- und Erfahrungsmana-

gement, Martin-Luther-University Halle-Wittenberg, Germany, pp. 296–303

3. Althoff, K.-D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent Based Maintenance for

Modularised Case Bases in Collaborative Multi-Expert Systems. In Proceedings of the 12th

UK Workshop on Case-Based Reasoning, December 2007 Cambridge, UK, pp. 7-18

4. empolis GmbH. Technical White Paper empolis:Information Access Suite. Technical

report, empolis GmbH, September 2005.

5. Van der Linden, F., Schmid, K., Rommes, E. (eds.) Software Product Lines in Action – The

Best Industrial Practice in Product Line Engineering. Springer Verlag, Berlin (2007)

6. Althoff, K.-D., Hanft, A., Schaaf, M. Case Factory – Maintaining Experience to Learn. In:

Göker, M., Roth-Berghofer, T. (eds.) In: Advances in Case-Based Reasoning – Proceedings

of the 8th European Conference, ECCBR 2006, Fethiye, Turkey, September 2006. LNAI,

vol. 4106, pp. 429–442. Springer Verlag, Berlin Heidelberg (2006)

7. Basili, V.R., Caldiera, G., Rombach, H. D.: Experience Factory. In: Marciniak, J.J (ed.) En-

cyclopedia of SE, Vol 1, pp. 469–476. John Wiley & Sons, New York (1994)

8. Richter, M.M.: Introduction. In Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S.,

(Eds.): Case-Based Reasoning Technology – From Foundations to Applications. LNAI

1400. Springer-Verlag, Berlin (1998)

9. Reichle-Schmehl, A.: Entwurf und Implementierung eines Softwareagenten zur Koordina-

tion des dynamischen Retrievals auf verteilten, heterogenen Fallbasen. Bachelor’s thesis,

Institute of Computer Science, University of Hildesheim, September 2008.

10. Dijkstra, E. W.: A note on two problems in connexion with graphs. In: Numerische

Mathematik. 1 (1959), pp. 269–271

11. Caire, G.: Developing multi-agent applications with JADE – Tutorial for beginners /

TILAB. September 2007. – Technical Report. http://jade.tilab.com/doc/tutorials/JADE

Programming-Tutorial-for-beginners.pdf ; last visited October 18th 2008

12. Ontañón, S. and Plaza, E.: An Argumentation-based Framework for Deliberation in Multi-

Agent Systems. In: Rahwan, Iyad and Parsons, Simon and Reed, Chris (Eds)

Argumentation in Multi-Agent Systems. LNCS, Vol.4946, p. 178-196. Springer (2008).

13. Leake, D. B., Sooriamurthi, R.: Dispatching Cases versus Merging Case-Bases: When

MCBR Matters. In: Proceedings of the Sixteenth International Florida Artificial

Intelligence Research Society Conference, FLAIRS-2003, pp. 129–133 (2003)

14. Redmond, M.: Distributed cases for case-based reasoning: Facilitating use of multiple

cases. In: AAAI. (1990) pp. 304-309.

15. Briggs, B., Smyth, B.: Provenance, Trust, and Sharing in Peer-to-Peer Case-Based Web

Search. In: Proceedings of the 9th European Conference on Case-Based Reasoning

(ECCBR). Trier, Germany, LNAI 5239, pp. 89-103. Springer (2008).

16. Klusch, M., Sycara, K.: Brokering and Matchmaking for Coordination of Agent Societies: a

survey. In: In Coordination of internet Agents: Models, Technologies, and Applications

Springer-Verlag, London, (2001) pp.197-224.

17. Calisti, M., Faltings, B.: Constraint Satisfaction Techniques for Negotiating Agents, In:

Proceedings AAMAS02 Workshop, July 2002, Bologna, Italy.

18. Adams, M., Andrei, C., Barack, R., Blohm, H., Boutard, C., Brodsky, S., Budinsky, F.,

Bünnig, S., Carey, M., Doughan, B., Grove, A., Halaseh, A., Harris, L., von Mersewsky,

U., Moe, S., Nally, M., Preotiuc-Pietro, R., Rowley, M., Samson, S., Taylor, J., and

Thiefaine, A.: Service Data Objects For Java Specification, Open Service Oriented

Architecture collaboration. Technical Report, November 2006.

19. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary,S., Barreto, C., Bloch, B., Curbera,

F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C. K., Khalaf, R., König, D., Marin,

M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., and Yiu, A.: Web Services

Business Process Execution Language Version 2.0. Organization for the Advancement of

Structured Information Standards. Technical Report. April 2007, http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, last visited on September 22nd 2008

20. McGuinness, D. L. and van Harmelen, F.: OWL Web Ontology Language. World Wide

Web Consortium. Technical Report. February 2004, http://www.w3.org/TR/owl-features/,

last visited on September 22nd 2008

21. Chinnici, R., Moreau, J. J., Ryman, A., and Weerawarana, S.: Web Services Description

Language (WSDL) Version 2.0. World Wide Web Consortium W3C Recommendation,

Technical Report. June 2007, http://www.w3.org/TR/wsdl20/ and http://www.w3.org/TR/

wsdl20-adjuncts/, last visited on September 22nd 2008

